PubMed=8698076; DOI=10.1006/exer.1996.0020
Dunn K.C., Aotaki-Keen A.E., Putkey F.R., Hjelmeland L.M.
ARPE-19, a human retinal pigment epithelial cell line with differentiated properties.
Exp. Eye Res. 62:155-169(1996)
PubMed=11504951; DOI=10.1073/pnas.171266298
Lund R.D., Adamson P., Sauve Y., Keegan D.J., Girman S.V., Wang S., Winton H.L., Kanuga N., Kwan A.S.L., Beauchene L., Zerbib A., Hetherington L., Couraud P.-O., Coffey P., Greenwood J.
Subretinal transplantation of genetically modified human cell lines attenuates loss of visual function in dystrophic rats.
Proc. Natl. Acad. Sci. U.S.A. 98:9942-9947(2001)
PubMed=14551534
Rogojina A.T., Orr W.E., Song B.K., Geisert E.E. Jr.
Comparing the use of Affymetrix to spotted oligonucleotide microarrays using two retinal pigment epithelium cell lines.
Mol. Vis. 9:482-496(2003)
PubMed=16262907; DOI=10.1186/1471-2415-5-25
Sharma R.K., Orr W.E., Schmitt A.D., Johnson D.A.
A functional profile of gene expression in ARPE-19 cells.
BMC Ophthalmol. 5:25-25(2005)
PubMed=21697133; DOI=10.1167/iovs.11-7479
Oshikawa M., Tsutsui C., Ikegami T., Fuchida Y., Matsubara M., Toyama S., Usami R., Ohtoko K., Kato S.
Full-length transcriptome analysis of human retina-derived cell lines ARPE-19 and Y79 using the vector-capping method.
Invest. Ophthalmol. Vis. Sci. 52:6662-6670(2011)
DOI=10.5897/IJBMBR2013.0154
Iloki Assanga S.B., Gil-Salido A.A., Lewis Lujan L.M., Rosas-Durazo A., Acosta-Silva A.L., Rivera-Castaneda E.G., Rubio-Pino J.L.
Cell growth curves for different cell lines and their relationship with biological activities.
Int. J. Biotechnol. Mol. Biol. Res. 4:60-70(2013)
PubMed=24251032; DOI=10.1155/2013/216359
Pasovic L., Utheim T.P., Maria R., Lyberg T., Messelt E.B., Aabel P., Chen D.F., Chen X., Eidet J.R.
Optimization of storage temperature for cultured ARPE-19 cells.
J. Ophthalmol. 2013:216359-216359(2013)
PubMed=25177495; DOI=10.1155/2014/801787
Kuznetsova A.V., Kurinov A.M., Aleksandrova M.A.
Cell models to study regulation of cell transformation in pathologies of retinal pigment epithelium.
J. Ophthalmol. 2014:801787-801787(2014)
PubMed=27499609
Wang Y., Sang A.-M., Zhu M.-H., Zhang G.-W., Guan H.-J., Ji M., Chen H.
Tissue factor induces VEGF expression via activation of the Wnt/beta-catenin signaling pathway in ARPE-19 cells.
Mol. Vis. 22:886-897(2016)
PubMed=28978645; DOI=10.1074/jbc.M117.812677
Chiang C.-K., Tworak A., Kevany B.M., Xu B., Mayne J., Ning Z., Figeys D., Palczewski K.
Quantitative phosphoproteomics reveals involvement of multiple signaling pathways in early phagocytosis by the retinal pigmented epithelium.
J. Biol. Chem. 292:19826-19839(2017)
PubMed=29476476; DOI=10.1007/978-1-4939-7680-5_17
Fasler-Kan E., Aliu N., Wunderlich K., Ketterer S., Ruggiero S., Berger S., Meyer P.
The retinal pigment epithelial cell line (ARPE-19) displays mosaic structural chromosomal aberrations.
Methods Mol. Biol. 1745:305-314(2018)
PubMed=31254428; DOI=10.1111/ceo.13578
Churm R., Dunseath G.J., Prior S.L., Thomas R.L., Banerjee S., Owens D.R.
Development and characterization of an in vitro system of the human retina using cultured cell lines.
Clin. Exp. Ophthalmol. 47:1055-1062(2019)
PubMed=31412689; DOI=10.3390/pharmaceutics11080412
Hellinen L., Pirskanen L., Tengvall-Unadike U., Urtti A., Reinisalo M.
Retinal pigment epithelial cell line with fast differentiation and improved barrier properties.
Pharmaceutics 11:412.1-412.12(2019)